首页> 外文OA文献 >Nonmyopic View Planning for Active Object Detection
【2h】

Nonmyopic View Planning for Active Object Detection

机译:非活动视图规划主动对象检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the central problems in computer vision is the detection ofsemantically important objects and the estimation of their pose. Most of thework in object detection has been based on single image processing and itsperformance is limited by occlusions and ambiguity in appearance and geometry.This paper proposes an active approach to object detection by controlling thepoint of view of a mobile depth camera. When an initial static detection phaseidentifies an object of interest, several hypotheses are made about its classand orientation. The sensor then plans a sequence of views, which balances theamount of energy used to move with the chance of identifying the correcthypothesis. We formulate an active hypothesis testing problem, which includessensor mobility, and solve it using a point-based approximate POMDP algorithm.The validity of our approach is verified through simulation and real-worldexperiments with the PR2 robot. The results suggest that our approachoutperforms the widely-used greedy view point selection and provides asignificant improvement over static object detection.
机译:计算机视觉中的中心问题之一是检测重要的重要物体并估计其姿势。目标检测的大部分工作都基于单个图像处理,并且其性能受到外观和几何形状的遮挡和模糊性的限制。本文提出了一种通过控制移动深度相机的视点进行主动检测的方法。当初始静态检测阶段识别出感兴趣的对象时,会对其类别和方向做出几个假设。然后,传感器计划一系列视图,以平衡用于移动的能量与识别正确假设的机会。我们提出了一个包含传感器移动性的主动假设测试问题,并使用基于点的近似POMDP算法对其进行了求解。通过PR2机器人的仿真和实际实验验证了我们方法的有效性。结果表明,我们的方法优于广泛使用的贪婪视点选择,并提供了比静态目标检测显着的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号